首页> 外文OA文献 >Robust Detection of Random Events with Spatially Correlated Data in Wireless Sensor Networks via Distributed Compressive Sensing
【2h】

Robust Detection of Random Events with Spatially Correlated Data in Wireless Sensor Networks via Distributed Compressive Sensing

机译:基于空间相关数据的随机事件鲁棒检测   通过分布式压缩感知实现无线传感器网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we exploit the theory of compressive sensing to performdetection of a random source in a dense sensor network. When the sensors aredensely deployed, observations at adjacent sensors are highly correlated whilethose corresponding to distant sensors are less correlated. Thus, thecovariance matrix of the concatenated observation vector of all the sensors atany given time can be sparse where the sparse structure depends on the networktopology and the correlation model. Exploiting the sparsity structure of thecovariance matrix, we develop a robust nonparametric detector to detect thepresence of the random event using a compressed version of the data collectedat the distributed nodes. We employ the multiple access channel (MAC) modelwith distributed random projections for sensors to transmit observations sothat a compressed version of the observations is available at the fusioncenter. Detection is performed by constructing a decision statistic based onthe covariance information of uncompressed data which is estimated usingcompressed data. The proposed approach does not require any knowledge of thenoise parameter to set the threshold, and is also robust when the distributedrandom projection matrices become sparse.
机译:在本文中,我们利用压缩感测理论对密集传感器网络中的随机源进行检测。当传感器密集部署时,相邻传感器的观测值高度相关,而与远处传感器相对应的观测值则较低。因此,在任何给定时间,所有传感器的串联观察向量的协方差矩阵可以是稀疏的,其中稀疏结构取决于网络拓扑和相关模型。利用协方差矩阵的稀疏结构,我们开发了一种鲁棒的非参数检测器,以使用在分布式节点上收集的数据的压缩版本来检测随机事件的存在。我们采用具有分布式随机投影的多路访问信道(MAC)模型来传输传感器的观测值,以便在融合中心获得观测值的压缩版本。通过基于未压缩数据的协方差信息构造一个决策统计信息来执行检测,该协方差信息是使用压缩数据估算的。所提出的方法不需要任何噪声参数来设置阈值,并且在分布式随机投影矩阵变得稀疏时也很健壮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号